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1 Introduction

The Voluntary Contributions Mechanism (VCM) is often used to decide how much of a public

good to produce and how to fund it. There is a large body of experiments involving the VCM

with a small number of well-known stylized facts. But to date, no theory fully explains these

facts. Neither standard game theory nor other-regarding preferences nor learning models can, by

themselves alone, explain these facts. Two studies by Cooper and Stockman (2002) and Janssen

and Ahn (2006) have taken the natural step and have merged other-regarding preferences and

learning models. They meet with some success in explaining the data but both the utility

functions and the learning models they use suffer from some drawbacks.

In this paper, we merge an evolutionary style learning model, that includes experimentation

and consequent “errors”, with a distribution of heterogeneous other-regarding preferences. We

produce simulated behavior that is remarkably similar to that observed in the experiments. Our

model is robust in two senses. First, it relies on a small number of parameters and the precise

values of those parameters do not matter very much. Second, the model generates data consistent

with those of different experiments and different experimenters.

The Experiments Beginning with the pioneering work of Marwell and Ames (1979), Isaac,

McCue, and Plott (1980) and Kim and Walker (1981), there have been an amazing range of

experiments involving the VCM. Some well-known1 stylized facts from the many experiments

with linear public goods are:

(1) Average contributions begin at around 50% of the total endowment and then decline with

repetition, but not necessarily to zero.

(2) There is considerable variation in individual contributions in each repetition. Some give

everything. Some give nothing. The individual contributions also show no consistent monotonic

pattern over time. Some increase, some decrease, and some have a zig-zag pattern.

(3) Increases in the marginal value of the public good relative to the private good lead to an

increase in the average rate of contribution. This is particularly true in later repetitions and for

small groups.

(4) Increases in the size of the group lead to an increase in the average rate of contribution.

This is particularly true in later repetitions and for small values of the marginal value of the

public good.

Standard Theory Standard theory provides no help in understanding these facts. In linear

experiments, the prediction from game theory is that contributing zero is the dominant strategy

in a one-shot game. Solving backwards one finds that zero contribution is also the equilibrium

in games with multiple rounds. There have been many suggested modifications to the standard

theory in an attempt to explain the experimental data. These include other-regarding preferences

1See Ledyard (1995), Holt and Laury (2002), and Croson (2007).
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(altruism and fairness), mistakes, and learning. Holt and Laury (2002) do an excellent job of

summarizing this literature. But it will be useful to review the few of those papers that are most

closely related to our work.

Other-regarding Preferences Some have suggested that subjects bring other-regarding pref-

erences into the lab with them which the experimenter cannot control and which cause the sub-

jects to behave differently than predicted if one ignores these preferences.2 Fehr and Schmidt

(1999), Bolton and Ochenfels (2000), Charness and Rabin (2002), and Cox et. al. (2007, 2008)

are among those who have taken this route. The idea is simple. The experimenter controls the

payoff to the subject. But, each subject has their own utility function that depends on others’

payoffs as well as their own, and which the experimentalist cannot control.3 As we will show

later, heterogenous other-regarding preferences lead to only three types of equilibrium behavior

in the linear public good environment: selfishness (these give nothing in equilibrium), altruism

(these give everything in equilibrium), and fair-mindedness (these give the average contribution

in equilibrium). Altruism by itself does not explain the wide diversity of contribution rates.

Anderson, Goeree, and Holt (1998) add the possibility of decision error to a model with

altruism to get an equilibrium exponential density for the distribution of contributions for the

linear public goods games. However they use a homogeneous altruism approach which assumes

all agents have exactly the same other-regarding preferences. Adding decision error does yield a

distribution of contributions but, as they point out, ”one feature of the data that is not covered

... is the tendency for contributions to decline over time”.

Equilibrium models with heterogeneous altruism or with homogeneous altruism and decision

errors capture the fact there is variation in individual contribution rates with some giving a lot

(the more altruistic) and some giving little (the more selfish). They predict that contributions

are responsive to the marginal value of the public good. But, these are static theories in a

one-shot game.4 They do not explain the dynamic of declining contributions in repeated play.

Other-regarding preference by itself is not a sufficient explanation for the behavior observed in

experiments.

2For some, the other-regarding behavior is triggered by or framed by the experiment itself.
It is not necessary for us to distinguish between the two approaches for this paper. However, it
is important if one is interested in transferring the model from the VCM world to, say, a world
with only markets and private goods. We discuss this further below in Section 7.

3We will go into more detail on the particulars of some of the utility specifications in Section
3 below.

4Charness and Rabin (2002) include a term in their utility function that provides a mechanism
for modeling reciprocity or reactions if others ”misbehave”. This has the potential to lead to
declining contributions over time, although for the most part they use it to define equilibrium
and not dynamics. But, since we are modeling repeated games and, in that context, believe that
retaliation is a strategic concept and not a basic preference concept, we prefer to leave retaliation
out of the utility function.
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Learning Some have suggested that it takes time for subjects to find the dominant strategy.

The decline in contributions over periods strongly suggests that individuals begin choosing ran-

domly (this would explain the initial average 50% contribution rates) and then learn to play

better over time.

Anderson, Goree, and Holt (2004) introduce a learning model ”in which agents adjust their

decisions toward higher payoffs, subject to normal error.” This dynamic does converge to the

equilibrium with errors described earlier. But it is a continuous time model and it is not clear

how one would calibrate its time pattern to a repeated experiment where contributions, and

therefore information, comes in discrete intervals.

Andreoni and Miller (1991) use the replicator dynamic to simulate behavior in linear public

goods VCM environments. They show that the replicator dynamic will produce decay towards

free riding over time as more cooperative strategies will be replaced by those that give less to

the public good, although the decay seems much slower than that occurring in the experiments.

Given sufficient time, the entire population will use the strategy that does the most free riding.

The decay to free riding is slower the larger the group size and the larger the marginal return.

But the decay is always there and is inconsistent with the higher rates of contribution seen in

experiments with high marginal value of the public good. Any learning rule that searches for and

finds better paying strategies will have this problem as long as individual preferences are selfish.

Since contributing zero is a dominant strategy, it is always better paying and will eventually

be found. So contributions will always converge to zero. Learning by itself is not a sufficient

explanation for the behavior observed in experiments.

First Attempts to Merge Only two papers have taken the obvious step and combined other-

regarding preferences and learning.5 Cooper and Stockmann (2002) merge a Bolton-Ockenfels

(2002) type fairness utility function with the Reinforcement Learning (RL) model of Erev-Roth

(1995). Janssen and Ahn (2006) merge a Charness-Rabin (2002) type social utility function6 with

the Experience Weighted Attraction (EWA) learning model of Camerer and Ho (1999). In both

cases, the authors are reasonably successful in generating behavior similar to that observed in

their respective experiments. But, in both cases there are some problems with their approaches.

One drawback is in the utility functions they use. The utility function used by Cooper and

Stockman ignores altruistic motives. This is no problem for the environment they study - a 3

5A paper by Wendel and Oppenheimer (2007) uses an agent-based model as we do, but
they take a much different approach to learning and fairness. Agents’ preferences include the
other-regarding component that can be dampened by a ’sense’ of exploitation, i.e. a sense
of contributing more than the average. The sensitivity to the average contribution (that can
change over time) makes preferences ’context-dependent’. Agents make probabilistic decisions
given their utility functions in each time period. We prefer to maintain the approach of game
theory and model utility separately from strategy. By doing so we believe the model will have
broader applicability than to just VCMs.

6This is essentially equivalent to the Fehr-Schmidt (1999) utility function.
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player minimal contributing set (MCS) game. However, as we will see below, the data from VCM

experiments reject the hypothesis that there is no altruism involved. The utility function used

by Janssen and Ahn has the property that individual equilibrium contributions are independent

of the size of the group. However, as we will see below, the data from VCM experiments rejects

the hypothesis that the size of the group does not matter.

Another drawback is in the learning models they use. Both RL used by Cooper and Stockman

and the EWA learning used by Janssen and Ahn are ill suited to repeated games with strategy

spaces that are a continuum. The models generate learning behavior that is generally much slower

than that of experimental subjects.7 This is not much of a problem for the research reported in

each of the papers, although to have a successful fit Janssen and Ahn were required to estimate

eight parameters for each agent in each experiment. With a small number of observations for

each agent, such an estimate is mostly an ex post calibration. Because of this, it is not clear that

their model and parameters would transfer to other experiments, either VCM or others, without

requiring additional ex post re-estimation of the parameters.

These drawbacks lead us to believe there is something to be learned by turning to an alter-

native model of behavior and an alternative model of other-regarding preferences.

Our Approach In this paper, we merge our Individual Evolutionary Learning (IEL) model

with a distribution of heterogeneous other-regarding preferences and produce simulated behavior

that is remarkably similar to that observed in the experiments. IEL is a model we have used

successfully before in a private goods setting with a call-market mechanism,8 and in a public

goods setting with the Groves-Ledyard mechanism.9 The stage games, generated from the specific

mechanisms in those settings, have the property that equilibria are Pareto-optimal so there is

little conflict between public and private interests. We have brought IEL unchanged from those

applications to the VCM experiments, to see whether it would be as successful when there is a

major conflict.

In IEL, agents retain a finite set of remembered strategies. After each iteration, they update

this set through experimentation and replication. Experimentation involves replacing, with low

probability, some of the elements of the set with a strategy chosen at random from the entire

strategy space. Experimentation introduces strategies that might otherwise never have a chance

to be tried. Replication goes through the set of remembered strategies and, using a series of

random paired comparisons within the set, replaces the strategies which would have provided a

low payoff in the previous period with copies of those that would have yielded a higher payoff.

Over time the remembered set becomes homogeneous with copies of the “best reply” strategy.

To generate their strategic choices, individuals choose strategies from the set of remembered

strategies, at random, proportionately to the payoff they would have received had they been

7See Arifovic and Ledyard (2004).
8See Arifovic and Ledyard (2007).
9See Arifovic and Ledyard (2008).
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played in the last round. The end result of IEL is a Markov process in strategies where the

remembered set of each agent, the state space of the process, co-evolves with the sets of all other

agents.

We assume that agents have other-regarding preferences. They are assumed to have a utility

function that is linear in their own payoff, in the average payoff to the group and in the amount

by which their payoff is less than the average payoff to the group. These three pieces reflect,

respectively, a selfish preference, an altruistic preference, and a preference for fairness to self.

This differs from Fehr-Schmidt (1999) and Charness-Rabin (2002) in a subtle but significant

way. Although ours and theirs are linear transformations of each other, the difference turns out

to be crucial.10 For example, their specification implies that, in a VCM game, the equilibrium

allocations are independent of the number of participants. This implication is not consistent

with the data.

To complete the model we assume that an agent’s two utility parameters, their marginal

utility for altruism and their marginal disutility for unfairness, are independently and identically

drawn from a probability distribution which has three parameters itself. We allow a different

range of parameters than either Fehr-Schmidt (1999) or Charness-Rabin (2002). As we will see,

ours is more consistent with the data.

To simulate an experiment with N individuals, we first draw N values of utility. This is like

asking N individuals into the lab. We then use IEL with these preferences to simulate the choices

of the subjects. We can repeat this as often as we want, each time simulating a new experimental

trial. At the end we can compute the average rate of contribution in VCM for the IEL model

with other-regarding preferences (ORP). We can then compare these to the data generated by

the experiments themselves.

Summary of Findings The major finding is that our model generates behavior similar to that

generated by experiments. Across a range of different experiments and different experimenters,

we find that the average contributions generated by our model differ from those in the experiments

by only 3.4% to 6.6%.

We also find that the precise values of the few parameters of our model do not matter very

much. IEL has 3 parameters: the size of the remembered set, and the rate and range of the

experimentation. ORP has 3 parameters: those that determine the probability distribution on

types. We show that the differences between our model and experimental data change very little

as we change the 6 parameters over a fairly wide range. This suggests that if one wants to

transfer our model to other VCM experiments or to other experiments like auctions in a private

goods world, there will be little need to re-calibrate the parameters. In fact, the IEL parameters

we end up using here are essentially the same as those in call market experiments in Arifovic

10The technical reason, discussed in section 3.1, is that the transformation depends on N , the
number of participants.
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and Ledyard (2007) and Groves-Ledyard experiments in Arifovic and Ledyard (2004, 2008).

We believe we have a robust explanation for a wide range of experiments. We now turn to a

fuller description of our approach and the research findings.

2 IEL and VCM

We begin with a description of a classic experiment with the VCM. We then describe the theory

of behavior which we call Individual Evolutionary Learning (IEL). Finally, we test this model

against the experimental data.

2.1 The VCM in Linear Environments

A linear public good environment consists of N agents, numbered i = 1, ..., N. Each agent has a

linear payoff function πi = pi(wi − ci) + y, where 1/pi is their marginal willingness to pay in the

private good for a unit of the public good, wi is their initial endowment of a private good, ci is

their contribution to the production of the public good, where ci ∈ [0, wi], and y is the amount

of the public good produced. The linear production function is y = M
∑N

j=1 c
j where M is the

marginal value of the public good.

The VCM in a linear environment creates a simple game. There are N players with strategies

ci ∈ Ci = [0, wi] and payoffs πi(c) = pi(wi− ci) +M
∑
cj. In what follows, we will only consider

symmetric VCM problems.11 That is, we will assume that pi = 1 and wi = w for all i. For

symmetric linear VCMs, it is easy to see that if M < 1 then each i has a dominant strategy of

ci = 0. It is also true that if M > (1/N), then the aggregate payoff is maximized if ci = w,∀i.
When (1/N) < M < 1, there is a tension between private and public interest that is the basis of

the standard commons dilemma.

In this paper we are going to focus on the classic experimental design of Mark Isaac and

James Walker that has served as the jumping off point for much of the experimental work that

has gone on since. They have run a number of experiments in which subjects use the VCM to

decide public good allocations.12 In an experiment N individuals are gathered together. Each

individual begins each period with w tokens. Each individual chooses how many of their tokens

to contribute to a group exchange with a total group return of NM
∑
ci. After summing the ci,

the per capita individual return, M
∑
ci, is calculated and each individual is informed of this.

Each individual also receives w − ci from their individual exchange. Thus the payment received

by i for this round is πi(c) = w − ci +M
∑
cj.

11We will indicate in the appropriate places how our theory applies more generally to asym-
metries in pi and in wi.

12See for example, Isaac, Walker and Thomas (1984), Isaac and Walker (1988), and Isaac,
Walker and Williams (1994).
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In the experiment reported in Isaac-Walker (1988), they used a 2x2 design with N equal to

4 and 10 and M equal to 0.3 and 0.75. They structured the experiment as a repeated game,

with no re-matching, played for T = 10 periods. We display, in Table 1, the average rate of

contribution, (
∑

t

∑
i c

i
t)/(10Nw) for each of the 10 periods for each of the 4 treatments in that

set of experiments.13 There are six observations per treatment, all with experienced subjects.

The combined averages over all 10 periods are in Table 2. The average rate of contribution for

the last three periods for each treatment is in Table 3.

Table 1

Average Rate of Contribution by period

t = 1 2 3 4 5 6 7 8 9 10

M = .3 N= 4 34.3 29.5 17.6 10.1 7.7 9.0 7.1 4.2 2.3 5.8

M = .3 N= 10 46.3 39.5 32.2 26.9 33.0 33.0 30.3 20.8 21.9 8.6

M = .75 N= 4 54.7 56.3 62.3 57.3 62.3 49.5 45 47.7 33.3 29.2

M = .75 N = 10 47.5 56.2 57.8 53 51.7 40.0 51.0 43.7 33.8 29.8

Source: IW(1988)

Table 2

Average Rate of Contribution - all 10 periods

N = 4 N = 10

M = 0.3 12.8 29.2

M = 0.75 49.8 46.5

Source: IW(1988)

Table 3

Average Rate of Contribution - last 3 periods

N = 4 N = 10

M = 0.3 4.1 17.1

M =0.75 36.7 35.8

Source: IW(1988)

These IW(1988) data are consistent with and representative of the four stylized facts listed

in the introduction. But what behavior are the subjects really following? The standard full

rationality, game theory prediction is that subjects will use their dominant strategy, ci = 0. This

is obviously inconsistent with these data. So we need a new theory.

13We thank Mark Isaac and James Walker for providing us with all of their data from the
1984, 1988, and 1994 papers.

8



2.2 Individual Evolutionary Learning

IEL is based on an evolutionary process which is individual, and not social. In IEL, each agent is

assumed to carry a collection of possible strategies in their memory. These remembered strategies

are continually evaluated and the better ones are used with higher probability. IEL is particularly

well-suited to repeated games with large strategy spaces such as subsets of the real line.

An experiment can often be modeled as a repeated game (G,R). The repeated game has a

stage game G and a number of rounds, T . The idea is that G will be played for T rounds. In

G = {N,X, π, r}, N is the number of subjects, X i is the action space of i, πi(x1, ..., xN) is i’s

payoff if the joint strategy choice is x, and ri(xt) describes the information reported to subject

i at the end of a round. These are all controlled by the experimenter. In round t, each subject

chooses xi
t ∈ X i. At the end of round t, subject i will be told the information ri(xt) about

what happened. Then the next round will be played. A behavioral model must explain how the

sequence of choices for i, (xi
1, x

i
2, ..., x

i
R) is made, given what i knows at each round t.

The primary variables of our behavioral model are a finite set of remembered strategies for

each agent i at each round t, Ai
t ⊂ X i and a probability measure, ψi

t on Ai
t. A

i
t consists of

J alternatives. A free parameter J can be loosely thought of as a measure of the processing

and/or memory capacity of the agent. In round t, each agent selects an alternative randomly

from Ai
t using the probability density ψi

t on Ai
t and then chooses the action xi

t = ai
t. One can

think of (Ai
t, ψ

i
t) as inducing a mixed strategy on X i at t. At the end of each round t, agents

are told r(xt). At the beginning of the next round t + 1, each agent computes a new Ai
t+1 and

ψi
t+1. This computation is at the heart of our behavioral model and consists of three pieces:

experimentation, replication, and selection.

We begin at the end of round, t, knowing Ai
t, ψ

i
t, and ri(xt).

Experimentation comes first. Experimentation introduces new alternatives that otherwise

might never have a chance to be tried. This insures that a certain amount of diversity is main-

tained. For each j = 1, ..., J, with probability ρ, a new contribution is selected at random from

X i and replaces ai
j,t. We use a normal density, conditional on X i, for this experimentation. For

each j, the mean value of the normal distribution is set equal to the value of the alternative, ai
j,t

that is to be replaced by a ‘new’ idea. That is the new alternative a ∼ N(ai
j,t, σ). ρ and σ are

free parameters of the behavioral model that can be varied in the simulations.

Replication comes next. Replication reinforces strategies that would have been good choices

in previous rounds. It allows potentially better paying strategies to replace those that might pay

less. The crucial assumption here is the measure of “potentially better paying strategies”. We

let ui(ai
jt|ri(xt)) be the forgone utility of alternative j at t given the information ri(xt). This

measures the utility i thinks she would have gotten had she played aj in round t. ui(aj|ri(xt)) is

a counter-factual valuation function and must be specified for each application.

9



Given a forgone utility function, ui, we can describe how replication takes place. For j =

1, . . . , J , ai
j,t+1 is chosen as follows. Pick two members of Ai

t randomly (with uniform probability)

with replacement. Let these be ai
k,t and ai

l,t. Then

ai
j,t+1 =

{
ai

k,t

ai
l,t

}
if

{
ui(ai

kt|ri(xt)) ≥ ui(ai
lt|ri(xt))

ui(ai
kt|ri(xt)) < ui(ai

lt|ri(xt))

}
.

Replication for t + 1 favors alternatives with a lot of replicates at t and alternatives that

would have paid well at t, had they been used. So it is a process with a form of averaging

over past periods. If the actual contributions of others have provided a favorable situation for

an alternative ai
j,t on average then that alternative will tend to accumulate replicates in Ai

t, (it

is fondly remembered), and thus will be more likely to be actually used. Over time, the sets

Ai
t become more homogeneous as most alternatives become replicates of the best performing

alternative.

Selection is last. Each contribution ai
k,t+1 is selected with the following probability:14

ψi
k,t+1 =

ui(ai
k,t+1|ri(xt))− εi

t+1∑J
j=1(ui(ai

j,t+1|ri(xt))− εi
t+1)

for all i ∈ {1, . . . , N} and k ∈ {1, ..., J} and where15

εi
t+1 = mina∈Ait+1

{0, ui(a|ri(xt))}.

We now have a complete description of the way that an IEL agent moves from Ai
t and ψi

t to

Ai
t+1 and ψi

t+1. The only remaining thing to pin down is the initial values, Ai
1 and ψi

1.

Initialization We use the simplest possible initialization. It is very naive behavior but this

has proven successful in our previous work and we see no need to change it now. We assume

that things begin randomly. We let Ai
1 be populated randomly with J uniform draws from X i.

We let πi
k,1 = 1/J ∀k.

14An alternative selection model would change the probabilistic choice function to ψ(ak) =
eλu

i(ak)P
j eλu

i(ak)
. We have found (see Arifovic and Ledyard (2004)) that the behavior predicted for any

λ differs very little from that generated by our proportional selection rule. This is because the
set A tends to become homogeneous fairly fast, at which point the selection rule is irrelevant.
We therefore use the proportional rule since it eliminates another parameter.

15This implies that if there are negative foregone utilities in a set, payoffs are normalized by
adding a constant to each payoff that is, in absolute value, equal to the lowest payoff in the set.
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We now have a complete model of behavior for a general repeated game. The two determining

components of IEL are A and u(a|r(x)). The three free parameters are (J, ρ, σ). We turn next

to its application to Voluntary Contribution Mechanism experiments.

2.3 IEL and VCM

In applying IEL to the VCM experiments, the key choices one needs to make are the set of

strategies, A, and the forgone utility function, ui. We take a very straight-forward approach.

The choice of A is easy. In the VCM experiments subjects are given an endowment, w and told

to choose at each iteration how much of that to contribute to the public good. That is, their

contribution ci ∈ [0, w]. We let A = [0, w]. For the choice of ui we assume that subjects are

risk-neutral, expected money maximizers. That is, we assume they want to maximize, πi. For

most VCM experiments, ri(c) =
∑

j c
j. This is what subjects are told after the choices cj are

made. We use the foregone utility function, ui(ci|ri(ct)) = πi(ct/c
i) = (w−ci)+M(ci+ri(ct)−cit)

where ri(ct) =
∑

j c
j
t for all i.

The only other choice to make when using IEL is which values of J , ρ, and σ to use. We will

show, in section 5.2, that the precise values of these parameters are of little importance. Our

results are insensitive to the exact values. So, in this paper we will set J = 100, ρ = 0.033, and

σi = w/10. These values are similar to the numbers we have used in our other IEL papers.

For the rest of this paper, when we refer to IEL with these parameters we will identify it as

IEL*.

2.3.1 An aside: Neutrality to affine transformations

We will be looking at many VCM experiments, some of which differ in their choices of parameters.

The generic linear VCM payoff function is πi = pi[(w − ci) + M(
∑
cj)]. We will be looking at

experiments with different values of pi and w. Can we pool these results?

Our model of behavior, IEL, as applied to the VCM above, implies that choices, however

random, will be independent of the value of p. This is easy to see by noting that p enters

the IEL process only at the stages of replication and selection. Affine transformations of the

payoff function do not affect these choices. Because of this, we will not differentiate between

experiments with different p’s.16

Our model of behavior, IEL, as applied to the VCM above is also independent of the value of

w in the sense that the percentage contribution rates made by IEL, when normalized by w will be

independent of w. Consider the % contribution rate, gi = ci/w, and rewrite the payoff function

as π = w[(1 − gi) + M
∑
gj]. Then changes in w are similar to changes in p which we have

16We should note that it is commonly believed by experimenters that p will have an effect on
the data. Higher p’s are expected to produce lower variance in the data, due perhaps to higher
attention rates. The effect of p on the mean data is often believed to be neutral. Our model
ignores these subtleties.
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already seen are neutral. So IEL produces percentage contribution rates that are independent of

w.17

2.4 Initial simulations

To see whether IEL* is an adequate model of the behavior in VCM experiments, we need to

compare the choices generated by IEL* with those observed in the laboratory. We begin by

doing this for the IW(1988) data.

We use IEL* to generate 40 simulated experimental sessions for some of the 4 treatments of

(M,N) used by Isaac and Walker. We then compare these simulation results to the experimental

data from IW(1988). In Figure 1, we show the paths of contributions (averaged over 6 sessions)

over 10 periods of the IW(1988) experimental treatments with M = 0.3 and N = 4, and M = 0.75

and N = 4. We display the comparable paths for the average contributions from the IEL*

simulations. The implications of these comparisons are clear. If we only considered treatments

withM = 0.3, we might conclude that the IEL* data and the IW(1988) data are very similar. The

initial contributions are around 50% and then, presumably because of learning, decline towards 0.

But if we consider the treatments with M = 0.75, we must conclude that the behavior generated

by IEL* is not that observed in the laboratory. The patterns of IEL* contributions for M = 0.75

are virtually indistinguishable from those for M = 0.3. But in the IW(1988) data, a higher M

clearly elicits higher rates of contributions.

One should not be surprised by this. IEL is about learning how to participate in a game with

payoffs of πi. The choices that IEL makes will converge to the Nash equilibria of the game (X, π)

which is zero contributions. If contributions for the M = 0.75 are declining to the equilibrium

level of zero, they are going much more slowly than predicted by IEL. If IEL is to be consistent

with the data, we need to have equilibrium possibilities other than zero.18

3 Other-regarding Preferences

As was shown in the previous section, the level of contributions observed in experiments is often

higher than is consistent with selfish preferences, even allowing for a learning process. As has been

suggested by many others, one way to explain the levels of contribution observed in experiments

is to assume subjects bring other-regarding preferences with them to the experiment and that

17If endowments are asymmetric in that wi 6= wj for some i, j, then this ”neutrality” still holds
for proportional changes in endowments. That is, as long as the new endowments ŵi = λwi for
all i and some λ > 0 then the rate of contributions generated by IEL will remain the same.

18In their 1994 paper, Isaac, Walker and Williams allowed some of their sessions to go as long
as 60 rounds, rather than stopping at 10. The rate of contribution did continue to decline past
round 10. But they did this only for M = 0.3. We do not know of any experiments testing the
hypothesis that, when N = 4 and M = 0.75, with enough rounds contributions will converge to
zero.
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this is not controlled by the experimenter. We introduce such an assumption. We do this by

adding a dash of altruism and fairness to some, but not all, agents.19

In the experiments, each agent receives a payoff πi(ci) = w−ci +M
∑
cj. We take altruism to

be a preference for higher values of the average payoff to all agents,20 π̄ =
∑
πi/N = w− c̄+MNc̄

where c̄ =
∑
ci/N . We take (one-sided) fairness to be a disutility for being taken advantage of21

which happens when π̄(c) > πi(c). That is, i loses utility when i’s payoff is below the average

payoff in this group. We maintain the linearity assumptions and model subjects as having a

utility function

ui(c) = πi(c) + βiπ̄(c)− γi max{0, π̄(c)− πi(c)}. (1)

We assume that βi ≥ 0 and γi ≥ 0.

It is clear from experimental data that there is considerable heterogeneity in the population

with respect to levels of other-regarding behavior. But the experimenter can neither observe

nor control for each agent’s values of (β, γ). We model the heterogeneity by assuming that each

subject i comes to the lab endowed with a value of (βi, γi) which is distributed independently

and identically in the population according to a distribution F (β, γ). We will be more precise

about the functional form of F (·) below.

It will be useful to know what the Nash Equilibrium levels of contributions are for any

particular draw of subject parameters (β, γ). It is very easy to characterize Nash equilibrium

for the VCM in symmetric environments where wi = w ∀i. With the linear other-regarding

preferences (1), given (N,M) and heterogeneity across (β, γ), there are only three types of Nash

Equilibrium strategies: free riding (ci = 0), fully contributing (ci = wi), and contributing an

amount equal to the average (ci = c̄ = (
∑

i c
i)/N). In equilibrium,

ci =


0

c̄

w

 if


0 ≥

[
(M − 1

N
)βi +M − 1

]
γi(N−1

N
) ≥

[
(M − 1

N
)βi +M − 1

]
≥ 0

γi(N−1
N

) ≤
[
(M − 1

N
)βi +M − 1

]
 (2)

Knowing an agent’s parameters (βi, γi) alone is not enough to determine whether they will

behave selfishly (i.e., give nothing) or altruistically (i.e., give everything.) Which strategy a

particular agent uses depends on that agent’s parameters (βi, γi) and on the parameters of the

environment (N,M). For our utility formulation (1), the ratio
1−M
M − 1

N

, acts as a differentiator

19We do this is a way that differs from the approach of others such as Fehr and Schmidt (1999)
and Charness and Rabin (2002). Our reasons for this are discussed in section 3.1.

20We considered having preferences depend on the sum of payoffs to all,
∑
πj, but that swamps

everything else when N becomes larger, which does not seem to be consistent with the data.
21We considered having preferences depend symmetrically and 2-sidedly on (π̄ − πi)2, as in

Ledyard(1995), but that produced behavior that is inconsistent with the data since the decline
in contributions over time predicted by the model appears to be too slow under this hypothesis.
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between 0 contributions and positive contributions in equilibrium for VCM. This is also true

in non-linear utility approaches to other-regarding preferences as found, for example, in Cox,

Friedman and Gjerstad (2007), Cox, Friedman and Sadiraj (2008) and Cox and Sadiraj (2007).

To compute the equilibrium for a particular draw of parameters, one first counts how many

types there are who will give nothing, those for whom 0 ≥ (M − 1
N

)βi + M − 1. Let Ns be the

number of these types who act selfishly in this environment. Next one counts how many types

there are who will give w in equilibrium, those for whom 0 ≤ γi(N−1
N

) ≤ (M − 1
N

)βi + M − 1.

Let Na be the number who act altruistically in this environment. In equilibrium, the average

percentage contribution is c̄/w = Na/(Na +Ns).

It is straight-forward to do comparative statics on this equilibrium. In particular, for any

specific realization of the parameters, ∂Ns/∂M ≤ 0 and ∂Na/∂M ≥ 0. So ∂ c̄
w
/∂M ≥ 0. Further,

∂Ns/∂N ≤ 0 and ∂Na/∂N ≥ 0. So ∂ c̄
w
/∂N ≥ 0. If the distribution of the parameters, F (·) is

continuous, then the comparative statics of the expected value of c̄
w

all hold with strict inequality.

3.1 Relation to other ORP models

Others have proposed other-regarding preferences before us, suggesting a variety of functional

forms and parameter restrictions.22 Equation (1) is intimately related to those of Fehr-Schmidt

(1999), Bolton-Ockenfels (2000), and Charness-Rabin (2002). However, the differences in func-

tional form are to some extent irrelevant (particularly in their linear forms). All are equivalent

up to linear transformations of the other, and equivalent utility functions will yield identical

behavior for a wide range of behavioral models including Expected Utility Maximizing and IEL.

The Fehr-Schmidt asymmetric fairness utility function is:23

uFS = πi − ai max {π̄−i − πi, 0} − bi max {πi − π̄−i, 0} (3)

where π̄−i =
1

N − 1

∑
j 6=i π

j.

To see the equivalence notice that (π̄−i − πi) =
N

N − 1
(π̄ − πi) and that max{πi − π̄, 0} =

(πi− π̄)+ max{π̄−πi, 0}. So uFS = π(1−B)+Bπ̄− (A+B)max{π̄−πi, 0}, where A =
N

N − 1
a

and B =
N

N − 1
b. Given uFS, let β =

B

1−B
and γ =

A+B

1−B
. Then it will be true that uAL =

KuFS where uAL is our utility functional form and K =
1

1−B
. Also, given uAL, we can derive

22Indeed, other-regarding preferences have been recognized in economics for a long time. See,
e.g., Ledyard (1971).

23Fehr-Schmidt actually allow their utility function to depend on the individual deviations of
others from i’s utility. In the VCM experiments, subjects have no knowledge of the distribution
of the contributions of others. They only know the mean. For that reason, we consider only
deviations of the average of the others from i’s utility.
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uFS =
1

1 + β
uAL.

Our functional form, (1), is also equivalent to that of Charness-Rabin, if one removes the

retaliatory term that adjusts for bad-behavior.24 Their utility function is:

u =(ρ+ θq)π̄−i + (1− ρ− θq)πi if πi ≥ π̄−i and (4)

u =(ξ + θq)π̄−i + (1− ξ − θq)πi if πi ≤ π̄−i.

where q = −1 if the others have misbehaved and q = 0 otherwise. This is the same as (3) if

b = ρ, a = −ξ, and θ = 0.

Finally, (1) is also equivalent to a linear version of ERC from Bolton-Ockenfels. The version

of that used in Cooper-Stockman (2002) is ui = πi − αmax{0, π̄ − πi}. Let βi = 0 in (1).

Given the equivalence of the varied functions, it is instructive to compare and contrast our

restrictions β ≥ 0, γ ≥ 0 with those of Fehr-Schmidt and Charness-Rabin. We all pretty much

agree on β and b =
N − 1

N

β

1 + β
. Our assumption that β ≥ 0 implies 0 ≤ b ≤ N − 1

N
which im-

plies their restriction that 0 ≤ b < 1. But we differ in our restrictions on γ and a =
N − 1

N

γ − β
1 + β

.

Fehr-Schmidt focus on difference aversion with the restriction that a ≥ b. Charness-Rabin con-

sider several parameter constellations but focus on social welfare preferences with the restrictions

that a+b ≥ 0 and −1/2 ≤ a < 0. Our restriction that γ ≥ 0 is equivalent to a+b ≥ 0 when β ≥ 0,

since a+ b =
N − 1

N

γ

1 + β
. However, differences arise over the rest. The restriction that a ≥ b is

the same as γ ≥ 2β while the restriction that a ≥ −1/2 is the same as γ ≥ (1/2)

[
β − N

N − 1

]
.

As we will see, these latter two are a little tenuous when confronted with data from VCM exper-

iments.

The linear multiplier converting Fehr-Schmidt and others to (1) and vice versa does depend

on N . That is not a problem from an individual decision theoretic point of view, since N is never

a choice variable of any agent. For example, the behavior generated by IEL for a particular uAL

will be the same as that for the equivalent uFS. However, the fact that N is involved in the

transformation does matter when one carries the functional form across VCM experiments with

different size groups. If the distribution of types is independent of N then how N enters the

utility function does affect how average group play changes as N changes. An example of this can

be seen in the, perhaps unintended, implication of the Fehr-Schmidt, Charnes-Rabin preference

model that equilibria for the VCM are independent of N. It is easy to show that, in an equilibrium

of their models, an agent will be selfish if b ≤ (1 −M), will be fair-minded if a ≥ M − 1 and

b ≥ (1 −M), and will be altruistic if a ≤ M − 1 and b ≥ (1 −M). So, unless the distribution

of types (a, b) is dependent on N, an assumption they never suggest, their models imply that

24Since we are modeling repeated games and, in that context, believe that retaliation is a
strategic concept and not a basic preference concept, we prefer to leave retaliation out of the
utility function.
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the average rate of contributions in a VCM experiment will be independent of N . But this is

not consistent with the data. For example, in the IW(1988) data for M = 0.3, contributions are

significantly higher for N = 10 than for N = 4. Our ORP model picks up this variation.

We believe that the principles of altruism and fairness that lie behind the Fehr-Schmidt and

Charnes-Rabin other-regaring preferences, are sound and fundamental. However, because their

functional forms and parameter restrictions conflict with the data from VCM experiments, we

believe a new functional form is necessary. We propose (1) as the natural alternative.

4 Merging IEL and Other-regarding Preferences

We merge IEL and other-regarding preferences by making two assumptions. First, we assume

that a subject will use the linear utility (1) in evaluating their foregone utility. We can write i’s

foregone utility as a function of i’s strategy, ci, and the average of the others’ contributions, µi.

ui(ci|µi) =

[
(M − 1) + βi(M − 1

N
)− γ∗iN − 1

N

]
ci (5)

+

[
M + βi(M − 1

N
) +

γ∗

N

]
(N − 1)µi

+ (1 + βi)w

where

γ∗i =

{
γi

0

}
if

{
π̄ ≥ πi

otherwise

}
.

Let ri(ct) = µi
t where µi

t can be computed from ĉt =
∑

j c
j
t because i also knows cit and µi =

ĉt − ci

N − 1
. It is this function, ui(a|ri(ct)), we will use in the replication and selection stages of the

IEL simulations.

Second, we assume something specific about the distribution of types, F (·). Some agents,

P% of the population, are purely ”selfish”; that is, they have the type (0,0). The rest, (1-P)%

of the population, have other-regarding preferences where the (βi, γi) are distributed identically,

independently, and uniformly on [0, B]× [0, G].

We have no real justification for this particular functional form of F , other than the results

in section 5. We began with just a uniform distribution on β and γ but that did not fit the

data at all, since it generated too few subjects who were selfish in equilibrium. So we added the

atom at (0,0). One would ultimately like to have a distribution that would hold up over a lot of

experiments and not just VCM experiments, but this will clearly require a lot more data.

For the rest of this paper we will refer to the model that combines Individual Evolutionary

Learning with other-regarding preferences as IELORP.
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4.1 Determining (P,B,G)

The next step in our analysis is to provide some estimate of the subject population parameters

(P,B,G). We do this by comparing our model to the data from Isaac-Walker (1988) described

earlier.

Using IELORP with the IEL* parameters, we generated a number of simulated experiments

varying the treatment (M,N) and the parameter triple (P,B,G). We used the same pairs of

(M,N) as in IW(1988). We varied P from 0.1 to 1, in increments of 0.1, and did a finer local

search in the increments of 0.01. We varied B and G from 0 to 60, in increments of 1. We did

not vary the IEL* parameters (J, ρ, σ) since, as we will show in section 5.2, such variation is

really unnecessary.

For each treatment and for each parameter triple, we conducted 40 trials. Each trial involves

a draw of a new type from F (·) for each agent. Those types were selected randomly as follows.

Each agent became selfish with probability P . If his type turned out to be selfish, then his utility

was based only on his own payoff. That is, βi = γi = 0. If the agent did not become selfish,

then we drew values of βi and γi uniformly and independently from the ranges [0, B], and [0, G]

respectively.

After running all of these simulations, we followed a standard approach to determining a

good choice of (P,B,G). We chose the values that best fit the IW(1988) data. In doing so we

did not want to ”force” the fit to be too tight. That is, we wanted the fit to be not only good

but also robust so that it has some chance of serving for other experiments. To determine a

loose fit, we computed the average contribution over all agents and over all simulations for all of

the ten periods, c̄10
IEL, as well as the average contribution over the last 3 periods, c̄3

IEL. We then

computed the squared deviations of each of these measurements from the same measurements

computed for the IW(1988) experimental data. The objective was to find the minimum of the

sum of these squared deviations, MSE, i.e.:

Min
R∑

r=1

[(c̄10
exp(r)− c̄10

IEL)2(r) + (c̄3
exp(r)− c̄3

IEL)2(r)] (6)

where r is a particular treatment for a given (N,M) and R is a total number of treatments.

For the IW(1988) data, R = 4. Since we want to be able to compare these results to other

experiments where R will be different, we normalize the MSE and report the normalized mean

squared error, NMSE which is given as:

NMSE =

√
MSE

2R

In our comparison of IEL with other-regarding preferences to the IW(1988) data, the prob-

ability distribution of (P,B,G) = (0.48, 22, 8) generates the lowest value of mean squared error

equal to 0.9347. The normalized measure is given by
√

0.9347/8 = 0.341. One can get an
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intuitive feeling for the goodness of fit by noting that the measurements, such as c̄10
IEL, used to

compute the NMSE belong to [0, 10] = [0, w]. That is they are the average contributions for an

endowment of 10 tokens. So a NMSE of 0.34 means that there is an average error of only 3.4%

in our fit across the 4 treatments in IW(1988).

For the rest of this paper we will refer to the particular version of IELORP with parameters

(J, µ, σ) = (100, 0.033, 1) and (P,B,G) = (0.48, 22, 8) as IELORP*.

4.2 The quality of the fit

4.2.1 Graphical Analysis

To provide a visualization of the high quality of the fit, in Figure 2 we present the average

contribution in IELORP* simulations for N = 4, for both values of M . We also present the time

paths of the experimental sessions for the same parameter values. In comparing the IELORP*

and experimental averages, keep in mind that the experimental results are the average of 6

observations while the IELORP* results are the average of 40 observations. It is thus not

surprising that the IELORP* curves are smoother than those from the experimental data. Figure

3 presents the paths for N = 10.

4.2.2 Statistical Analysis

Since IEL generates a Markov process on the sets Ai
t, and not on the actions, ai

t, standard

statistical techniques for testing the validity of learning models are difficult to use. We have

indicated how low the NMSD is for the averages but that gives little indication of the distribution

of those averages. To give a more precise idea as to how well IEL corresponds to the data we

take a bootstrapping approach.25 For each treatment in (N,M), using IELORP* we generated

10,000 simulations. We kept track for each simulation what the average group contribution was

over all 10 periods and for the last 3 periods. We collected these in bins of size 1 each. This

gives us a density function of C10, and C3 for each treatment. The graphical representations

are included for two of the 10 period averages in Figures 4 and 5. The representations for the

average contributions in the last 3 periods for each of the 4 treatments are in Figures 6-9.

We list in Table 4, the 5% and 95% bounds on the IELORP* densities. For example, the 5%

number means that 5% of the individual session average contributions simulated with IELORP*

were below this number. We also list the average contributions for each of the IW88 experiments.

Without exception, the average data from IW88 lie inside of both upper and lower 5% bounds.

25We thank Nat Wilcox for suggesting this direction.
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Table 4

Statistical Analysis of IELORP* vs. IW88

10 per. 3 per

5% IW ave 95% 5% IW ave 95%

N=4. M = 0.75 13.4 49.8 78.6 1.1 36.7 91.8

N=4, M = 0.30 9.4 12.8 22.5 0.2 4.1 7.6

N=10, M = 0.75 26.5 46.5 65.4 17.9 35.8 70.2

N=10, M = 0.30 14.5 29.2 45.7 2.4 17.1 43.5

In addition, with the exception of (N,M) = (4, 0.3), all of the individual observations of the

IW88 experiments lie inside these bounds.26 For the M = 0.75 treatments, the IELORP* data

for the final 3 periods have noticeable peaks. The individual IW88 data do cluster around these

peaks.

We also computed Kolmorgorov-Smirnov goodness of fit statistics between the simulated cu-

mulative distribution functions and the empirical distributions generated in the IW experiments.

For the average of the final 3 periods these are 0.28 for (N,M) = (4, 0.75), 0.26 for (4, 0.3), 0.45

for (10, 0.75), and 0.43 for (10, 0.3). Since there are 6 observations for each of these, they are

all within a critical value of α = 0.15, d = 0.45, where α = 1 − P (Dn ≤ d) and Dn is the K-S

statistic.27

4.3 Implications for the distribution of types

The parameters (P,B,G) determine the distribution of types which in turn determines the

expected average equilibrium rate of contribution for a particular value of (N,M). In section 3,

following equation (2) we saw that for any given draw of individual parameters the equilibrium

rate of contribution is
Na

Na +Ns

. Therefore an approximation of the average equilibrium rate of

contribution in equilibrium is Ce =
Pa

Pa + Ps

where Pa is the probability that an agent will act

altruistically (contribute w) and Ps is the probability an agent will act selfishly (contribute 0).

The probability an agent will act fair-minded is Pf = 1− Ps − Pa. We can easily compute these

26For (4, 0.3) there are 2 of the 10 period averages that are higher than 22% and one that is
lower than 9%. There are 2 of the final 3 period averages that are 0 which is less than the 0.2
bound, although there is little difference between 0 and 0.2.

27We did this for the 10th (last) period and got statistics of 0.36, 0.28, 0.53, and 0.55. We did
it for the 10 period averages and got statistics of 0.21, 0.67, 0.25, and 0.58.
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probabilities. Let R =
1−M
M − 1

N

and S =
N − 1

NM − 1
. Then from equation (2):

Ps = prob{β ≤ R} = P + (1− P )(R/B)

Pa = prob{β ≥ Sγ +R} = (1− P )(R− .5GS)/B if B −R− SG ≤ 0

= (1− P )(.5)(B −R)2/BGS if B −R− SG ≥ 0.

In Table 5 we provide the values of these probabilities for the parameters (P,B,G) =

(0.48, 22, 8).

Table 5

Probability of Equilibrium Actions

P = 0.48, B = 22, G = 8

N = 4 N = 10

Ps, Pa, Pf Ps, Pa, Pf

M = 0.3 0.81, 0.01, 0.18 0.56, 0.11, 0.33

M = 0.75 0.49, 0.37, 0.14 0.49, 0.38, 0.13

The numbers in Table 5 highlight the fact that in the IELORP model, selfish and altruistic

behavior are relative concepts. Whether a particular subject act altruistically or selfishly will

depend on the situation in which they find themselves – the number of participants and the

marginal benefit of their choices. Higher M really brings out the altruistic behavior in an

IELORP* agent, especially when there are few participants. Higher N also brings out altruistic

behavior in an IELORP* agent especially when M is low. But, once N gets bigger than 10, the

probability of selfish behavior stays fairly constant.

In Table 6, we provide a comparison between what the IELORP* model predicts about the

expected rate of contributions in equilibrium and what the IW88 data say about the average of

the last 3 periods of the experiments.28 The first entry in each cell is the IELORP* prediction.

The second entry is from the IW88 data. IELORP* is providing a good equilibrium prediction

about the rate of contributions to which the IW88 experimental groups are converging. The

average difference between the prediction of IELORP* and the data is 4.26% of the endowment,

w.

28We are implicitly assuming that the average contributions in the last 3 periods is an estimate
of where the group is converging to, the equilibrium of the group.
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Table 6

Expected and Actual Average Rate of Contribution (%)

IELORP* Ce, IW(1988) final 3 periods

P = 0.48, B = 22, G = 8

N = 4 N = 10

M = 0.3 1, 4 17, 17

M = 0.75 43, 37 44, 36

4.4 Implications for Fehr-Schmidt (1999)

One might wonder how our distribution on types differs from that in Fehr-Schmidt (1999). There

it is suggested in Table 3 on p.843 that a discrete distribution on (a,b) where the prob(a = 0) =

.3, prob(a = .5) = .3, prob(a = 1) = .3, prob(a = 4) = .1, prob(b = 0) = .3, prob(b = .25) = .3 and

prob(b = .6) = .4 will explain much of the data. What would these imply for the probability of

each type?

First, with a ≥ 0, the probability of an altruistic type is 0. In the Fehr-Schmidt model, an

agent is altruistic in their model iff a ≤ M − 1 < 0. So if a ≥ 0 there can be no altruistic type.

This is not consistent with the data since there are those subjects who contribute most or all of

their endowment even in round 10.

Second, for their proposed distribution on types, the probability of type does not depend on

N. This is not consistent with the data for N = 4.

Third, it is true that for the Fehr-Schmidt distribution we should expect to see different

dynamics as M varies. For M = 0.3 in their model an agent is selfish if and only if b ≤ 0.7. So the

probability of selfish behavior is 1. For M = 0.75, in their model, the probability of selfishness is

0.6 and the probability of fairness is 0.4. These imply higher rates of contributions in the earlier

rounds. But without altruistic agents to pull up the contributions of the fair-minded agents, the

equilibrium is that all contribute 0. In later periods, the average rate of contribution goes to 0

no matter what M is. This is also not consistent with the data.

5 Sensitivity

How excited should one be about the results above? There are number of challenges one can

make. In this section and the next we look at two: sensitivity and transferability.

In this section, we ask how important the particular model parameters are - how sensitive the

performance is to specific values. That is, if we change a parameter value, will the contributions

generated change dramatically? If the answer is yes then one might worry that new data sets

from new experimental situations might require new simulations to calibrate those parameters,

rendering any particular results, including the ones above, as less interesting. On the other
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hand if there is a significant range of values of the parameters (J, ρ, σ) and (P,B,G) over which

IELORP generates data consistent with the experimental data, then one should be a bit more

excited.

There are two sets of parameters of interest. For IEL there are (J, ρ, σ) and for ORP there

are (P,B,G). We will take up each in turn. But before we do so, it is interesting to note that

the two sets will affect the simulated behavior, the choices of cit, in fundamentally different ways.

The population parameters (P,B,G) are crucial in determining the type of behavior any agent

will adopt. The particular parameters that agents take into a session will affect the contribution

levels to which a collection of agents will converge. The utility parameters will have relatively

little effect on the rate of convergence. So the distribution of the ORP parameters should affect

the average of the last three contributions more than the average of all ten. The IEL parameters

(J, ρ, σ), on the other hand, have little to do with determining the equilibrium and very much to

do with the rate and direction of learning. We would expect changes in the IEL parameters to

affect the average of ten periods of contributions but not the averages over the last three.

5.1 Changes in ORP parameters.

We consider two types of changes in the parameters of the population type distribution function.

The particular choices of B and G are not crucial at all as long as they are paired appropriately.

The results of our grid search in section 4.1 indicate that there is a wide range of the values of

B and G for which the value of NMSE is equal or below 0.5. This is illustrated in Figure 10

which plots NMSE as function of combinations of G (given on the x-axis) and B (given on the

y-axis). The extensive blue colored valley is the region where NMSE reaches its minimal values

below 0.5. A good approximate relation for the B and G that are at the bottom of this valley is

G = 0.5(B − 6) for B > 6. That is, if you pick any B∗ > 6 and we then pick G∗ = 0.5(B∗ − 6)

and run simulations, drawing (β, γ) from the distribution of (0.48, B∗, G∗), we will generate data

with an NMSE of less that 0.5 from the IW(1988) data.

In Table 7 we list the values of average percentage of contribution, Ce, for values of (P,B,G) =

(0.48, B, .5(B−6)) where B takes on a variety of values. We do this for 8 combinations of (N,M).

The key fact one should take away from this table is that, for a given (N,M), there is very little

variation in Ce as we vary B. So the equilibrium changes little as we vary B and, thus, the NMSE

relative to any data set will vary little as we change B.
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Table 7

Ce for variations in B

B 10 22 30 40 50 60 100

M=0.3 N=4 0 1 2 3 3 4 5

N=10 16 17 17 18 18 18 19

M=0.75 N=4 45 43 42 42 41 41 41

N=10 46 44 43 43 42 42 42

The NMSE between IELORP* and IW(1988) is also fairly insensitive to the choice of P

as long as the choices of B and G are adjusted appropriately. As displayed in Table 8, for

P ∈ [0.1, 0.5], the NMSE is between 0.34 and 0.4 which are relatively low numbers. But it must

be noted that the values of B and G that combine with P to give these low NMSEs change

considerably as P changes. As P increases, implying a higher probability of purely selfish types,

the minimizing ratio B/G also increases, implying a higher probability of altruists relative to fair

types. Remember that the average equilibrium contribution is approximately Ce =
Pa

Pa + Ps

. If

this is to remain constant, as it should to keep NMSE low, then Pa =
Ce

1− Ce
Ps.

Table 8

Variations in P

P NMSE B G

0.0 0.51 16 60

0.1 0.40 23 59

0.2 0.39 34 59

0.3 0.39 27 31

0.4 0.37 40 27

0.48 0.34 22 8

0.5 0.36 21 7

Finally, one can ask what happens if we use a distribution other than the uniform distribu-

tion. We considered the Beta distribution proposed by Janssen and Ahn (2006). They jointly

estimated, for each individual, EWA parameters and the parameters of Charness-Rabin other

regarding preferences. Based on these individual estimations, Janssen and Ahn propose a Beta

distribution that best fits the distributions of the parameters ρ and ξ from equation (4). They

suggest that ρ ∼ B(2, 0.75) and that ξ ∼ −9 + 10 ∗ B(3, 0.5). We take their suggestions for the

Beta distributions of ρ, call its cumulative G1(ρ), and ξ, call its cumulative G2(ξ), and convert

these to distributions on β and γ. The distribution on β is then F 1(β) = G1

(
β

1 + β

)
. The

distribution on γ is F 2(γ|β) = G2

(
β − γ
1 + β

)
. Note that the distribution on γ will no longer be
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independent of β.29 We ran 40 sets of IELORP simulations using F 1 and F 2. The NMSE from

the IW88 data for those data is 2.8, a much larger number than is desirable. The model with

the Janssen-Ahn Beta distributions coupled with IELORP does not fit the data very well.

To try to attain a better fit of the Beta distribution, we added an atom of probability for

selfishness as we did for the uniform. So when a type is to be drawn it is first decided, with

probability P, whether a subject is just selfish. If yes, then (β, γ) = (0, 0). If no, then (β, γ) is

drawn from (F 1, F 2). We tried different values30 of P and obtained the best fit for P=0.32. The

value of NMSE that we get in this case is 0.47. This is fairly close to that attained by our best

fit with IELORP*.

To illustrate how similar the behavior generated by IELORP* is for a wide range of population

type distributions, we plot some results from 40 simulations for each in Figure 11 with (N,M) =

(10, 0.3). There are 3 curves varying (B,G) for P = 0.48. B runs from 8 to 58 with the

appropriate G. There is virtually no difference. The NMSEs are 0.34, 0.42, and 0.44. There is

one curve for the Beta distribution with P = 0. The NMSE for this is 2.8, much larger than the

other NMSEs. But, there is not much difference in the average rate of contribution until t = 7

at which point divergence occurs. This highlights the point that the probability distribution

affects the point to which contributions converge. It also indicates that in some cases behavior

with an NMSE of 2.8 is not that far off of behavior with an NMSE of 0.34. Finally, to illustrate

robustness with respect to P, there is one curve for P=0.3 which again lies pretty much on top

of the baseline model with P = 0.48. The NMSE for this is 0.37.

We conclude that there is a wide range of probability distributions that generate behavior

close to that of economic experiments, although the range is certainly not arbitrary.

5.2 Changes in IEL parameters

How does IELORP perform when we change the IEL parameter values? How important were

our choices of (J, ρ, σ)? We re-conducted the grid search for two values of J , 50 and 200, and

two values of the rate of experimentation, ρ, equal to 0.02 and 0.067. We also examined what

happens to the NMSE values when we changed the standard deviation in the experimentation

process. We tried a 10 times smaller, and a 2.5 times larger value of σ along with the values of

P, B, and G that gave the best fit in our baseline model. The results of these simulations are

displayed in Table 9.

29A more faithful application of their distributions would have F 1(β) = G1N − 1

N

β

1 + β
and

F 2(γ|β) = G2N − 1

N

β − γ
1 + β

. But we wanted to preserve the independence from N and so ignored

the effect of N .
30We did not explore the effect of changing the parameters of the Beta distributions.
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Table 9

Variations in (J, µ, σ)

IEL parameters B G NMSE

IELORP* 22 8 0.34

J = 50 16 5 0.35

J = 200 23 8 0.35

ρ = 0.02 20 7 0.34

ρ = 0.067 23 8 0.34

σ = 0.1 22 8 0.345

σ = 2.5 22 8 0.345

The results of these parameter variations are, to us, astounding. There is virtually no change

in the normalized mean square error between the IELORP* model fit to the IW(1988) data and

those from the variations. The values of B and G that minimize NMSE for each of the variations

are very close to the values, (22, 8), that minimize NMSE using our baseline model (see Table

9). In fact, the values of (B,G) in Table 6 satisfy G = 0.5(B − 6), the relationship discussed in

the previous section.

This means that as long as the parameters (J, ρ, σ) are in the set [50, 200] × [0.02, 0.67] ×
[0.1, 0.25] we will get the same contribution behavior from the IELORP* model.31 Thus if there is

heterogeneity among subjects with respect to computational or memory capacity, the parameter

J , or with respect to the rate and extent of experimentation, the parameters (ρ, σ), then as long

as that heterogeneity is within the bounds above, it should have little effect on the closeness of

the fit to the data.

The insensitivity of IEL to the specific values of (J, ρ, σ), as long as they are in a reasonable

range, in not unique to VCM experiments. We have used IEL (with standard selfish preferences)

in other repeated games. Notably we have used it to study call markets (in Arifovic and Ledyard

(2007)) and to study Groves-Ledyard mechanisms for public good allocations (in Arifovic and

Ledyard (2004, 2008)). The parameters for IEL that provided good comparisons to the data in

these papers are essentially the same as those in Table 9. For call-markets (5 buyers and 5 sellers

with unit demands or supplies), the parameters were (J, ρ, σ) = (100, 0.033, 5).32 For the GL

mechanisms (5 participants choosing actions in [−4, 6]), the best parameters were (500, 0.033, 1)

but (200, 0.033, 1) yielded results similar33 to those for J = 500.

31We did not explore the limits to which these sets can be pushed. It is highly likely that a
much broader set of parameters will work.

32In fact, we used σ = 1 but the range of possible actions was [0, 2] so normalizing gives σ = 2.
33We refer the reader to that paper for a more precise understanding of the nature of the

similarity.
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6 Transferability

A second type of challenge to the validity of IELORP* as a reasonable model of behavior asks

what happens if we use it that to generate simulations to compare with data from other experi-

ments.

6.1 Andreoni (1995)

To check the transferability of our model to other data sets, we began with Andreoni’s (1995)

experimental data. His Regular treatment corresponds closely to Isaac and Walker (1988) ex-

perimental design with two exceptions. First, he used only one treatment of (N,M) = (5, 0.5).

Second, in the Isaac-Walker, each subject was put into a group at the beginning of a session and

remained in that group through the ten rounds. In Andreoni, twenty subjects were randomly

rematched in each round34 into groups of size N = 5 with M = 0.5 In checking our model and

parameter values against his data, we modified our IEL simulations to reflect the random match-

ing treatment. Thus, in each simulation, we construct 20 IEL agents, and, in each period of the

simulation, match them randomly into the groups of N = 5. We used his data set on average

contributions per round (also 10 rounds) to do another grid search for the values of (P,B,G) that

minimize the mean squared error. We found that (0.39, 36, 20) resulted in the minimum NMSE

of 0.41. This is a bit off of our values of (0.48, 22, 8). But the difference is really slight. Using

our values, IEL generates a NMSE of 0.49, virtually the same as the minimal value. In Figure

12, we present the pattern of average contributions for Andreoni’s data and for IEL simulations

using our parameters (0.48, 22, 8).

Andreoni (1995) also reports on another treatment called Rank. In this treatment, subjects

are paid not on the value of πi, but on the basis of where their πi ranked with others. Andreoni

uses a payoff of ri = Ri(π1, ..., πN) where Ri depends only on the relative rank of πi. Note that

Ri(π) = Ri(w− c1, ..., w− cN). That is, it is only the selfish part of the payoff that is important.

For this treatment, the foregone utility is computed as follows. Let cit be the contribution of i

from last time. Rank and renumber the cjt for j 6= i so that c1
t ≥ c2

t ≥ ... ≥ cN−1
t . If ckt ≥ ci ≥ ck+1

t

then Ri(ci|ct) = Rk+1 and the foregone utility for i is u(c|ct) = Ri(ci|ct) − γ{0, R̄ − Ri(ci|ct)}.
Let us see how agents with utility of ui = πi + βπ̄ − γmax{0, π̄ − πi} would behave in the Rank

experiment. Here, ui = Ri(w− c) + βR̄− γmax{0, R̄−Ri}. Note that R̄ is known and constant

over all choices of c. The analysis is easy if γ = 0. Here ui(c) > ui(c′) iff w − ci > w − c′i.

The agent only cares about w− ci, so Rank should produce IELORP results equivalent to those

generated in section 2.4 with the selfish IEL where β = γ = 0. But when γ > 0 this becomes

more interesting. Now ui(c) = Ri(w − c)− γmax{0, R̄ − Ri(c). If i’s rank payoff is higher than

34In Andreoni (1995), it was suggested that the difference between staying in the same group,
partners, and random rematching, strangers, was significant. But in Andreoni and Croson (2008)
they point out that subsequent experiments, such as Croson (1996), suggest there is no difference.
In any case we take the strangers design seriously in our IEL simulations.
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average, then this is just like γ = 0. However, if i’s rank payoff is lower than average, then i

will have stronger incentives to push ci to zero. So Rank should produce IEL results below the

selfish IEL. As we did for Andreoni’s Regular Treatment, in each simulation we generated 20 IEL

agents, and randomly matched them into groups of 5 in each period of the simulation. A grid

search over different values of (P,B,G) resulted in the minimum NMSE of 0.39 for (0.31, 4, 12).

Using our parameters, (0.48, 22, 8), to generate the data yields a NMSE of 0.41 for Andreoni’s

rank data. We plot average contributions (over 40 simulations) for (P,B,G) = (0.48, 20, 8) and

compare it to the experimental data from Andreoni’s Rank Treatment in figure 13.

So it seems that transferring IELORP* creates no problems. The data generated by IEL,

using exactly the same parameters that we used in the IW(1988) simulations, produces data

similar to that of the Andreoni experiments in both the Regular and Rank treatments. For these

two treatments, (N,M) = (5, 0.5).

We implemented the same statistical procedure for the Andreoni data that we did for IW(88).

The results are listed in Table 10.

Table 10

Statistical Analysis of IELORP* vs. Andreoni

10 per. 3 per

5% IW ave 95% 5% IW ave 95%

Regular 14.3 44 66.9 2.5 31.6 74.1

Rank 10.6 12.6 18.8 0.4 7.0 3.3

With the exception of the last 3 periods for the Rank treatment, the data are well within

the 5% bounds. For the last 3 periods of the Rank treatment, the treatment in which subjects

are paid based on their rank and not on their earnings, IELORP* predicts slightly more selfish

behavior than Andreoni’s subjects displayed.

6.2 Other Isaac-Walker small group experiments

Isaac and Walker have conducted a number of other VCM experiments beyond the IW(1988)

on which we have focused so far. We list, in Table 11, a few of these treatments along with

the IW(1988) and Andreoni’s experiments we have already covered. For each of the lines in the

table, we ran 40 simulations with IELORP*. In the far right column are the normalized mean

square errors that arise when we compare the IELORP* averages for 10 periods and the final 3

periods with those from the data sets. Some of these are low, one is not. Let us examine each

in turn to see whether or not they provide support to considering IELORP* as an appropriate

behavioral model.

27



Table 11

NMSE Values for Small Group Experiments35,

Data set N M cash exper. obser. NMSE

1 IW 88 4, 10 0.3, 0.75 yes yes 6 0.34

2 Andreoni (reg) 5 0.5 yes no 8 0.49

3 Andreoni (rank) 5 0.5 yes no 8 0.41

4 IW 84 4, 10 0.3, 0.75 yes yes 1 0.88

5 IW 84 4, 10, 0.3, 0.75 yes no 1 2

6 IW 88 4 0.3 yes no 6 0.66

Line 4 and 5 come from Isaac, Walker and Thomas (1984) which preceded Isaac and Walker

(1988) in terms of treatments. They used the same values of M and N for 4 treatments. They

also used both inexperienced and experienced subjects so they had a 2x2x2 design. They had

only one session for each treatment. We are reluctant to make too much of observations that are

a single data point but we include them for the record. For the treatments involving experienced

subjects, line 4, we get an NMSE = 0.88 when we compare the experimental data to the IELORP*

simulations. For the treatments with inexperienced subjects, line 5, the NMSE is 2.0. The main

distinguishing feature of line 5 is that it involves inexperienced subjects. One might therefore be

tempted to argue that inexperience is a condition important in experiments that is not included

in the IELORP* model. However, as we will see in the next paragraph, that is not supported in

the IW(1988) experiments with inexperienced subjects. We believe the NMSE of 2 is an artifact

of the small sample size of 1. It is not surprising that a single session might deviate from that

average generated by IELORP*, even if the average of a larger number of experiment sessions

would not. We believe that more experiments with inexperienced subjects, on these parameters

for (N,M), are needed to reject IELORP*.36

Line 6 comes from Isaac and Walker (1988). As they were providing experience for their

subject pool for the IW(1988) experiments, Isaac and Walker conducted six sessions with M =

0.3, N = 4 and inexperienced subjects. When we compute the NMSE for the difference between

the average contributions from these data and those from IELORP*, we get 0.66.

The reasonably low value of NMSE for line 6 suggests to us that the one observation from

IW84 mentioned in the previous paragraph is indeed an outlier. More sessions could generate

35The initial endowment, w, varied across these experiments ranging from 10 to 60. We ignore
this here for the reasons given in section 2.3.1. All sessions had 10 rounds.

36The IW84 experiments with experienced subjects generate 10 period and 3 period averages
that lie in the 5% bounds from Table 4 with the exception of (N,M)=(4, 0.3) where the 3 period
average is 10, a bit more than the 95% bound of 7.6. The IW84 experiments with inexperienced
subjects generate 10 period and 3 period averages that lie in the 5% bounds from Table 4 with
the exception of (N,M)=(4, 0.3) where the 3 period average is 12, a bit more than the 95% bound
of 7.6, and the 10 period average is 26, a bit more than the 95% bound of 22.5.
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average contribution rates closer to IELORP*. Therefore, inexperience is not something that we

need to control for in our IELORP* model.

7 Conclusions

Learning alone does not explain the VCM data. Other-regarding preferences alone do not explain

VCM data. But combining them in an appropriate way does the job. We have merged our

learning model, IEL, with a modification of standard heterogenous other-regarding preferences,

ORP. We then provided a distribution function over preference types. The resulting model,

IELORP* is parsimonious and generates behavior similar to that in many VCM experiments.

Further, the performance of the model does not change much over a wide range of values for

its parameters. We have provided a robust explanation for the four stylized facts from VCM

experiments.

The major finding is that our model generates behavior that is similar to that generated by

many VCM experiments. It is easy to verify that IELORP* generates behavior that satisfies the

following stylized facts.

(1) Average contributions begin at around 50% of the total endowment and then decline with

repetition, but not necessarily to zero.

(2) There is considerable variation in individual contributions in each repetition.

(3) Increases in M , the marginal value of the contribution to the public good, lead to an

increase in the average rate of contribution particularly in later repetitions. This is especially

true for small groups.

(4) Increases in N lead to an increase in the the average rate of contribution particularly in

later repetitions. This is especially true for small values of the marginal value of contribution to

the public good.

The experiments we consider include two run by Isaac-Walker at different locations and two

run by Andreoni. Each of these experiments had 6-8 observations.37 Using a normalized mean

squared error measure (NMSE), we find that the average contributions generated by IELORP

differ from those in these experiments by only 3.4% to 6.6%. Using a bootstrapping method we

find that the averages, with the exception of the last 3 periods of Andreoni’s Rank condition, lie

well within a 90% confidence region. We find this to be compelling evidence in favor of our model.

This is especially true when one notes that the three parameter values we use for IEL in the VCM

are essentially the same values we successfully used for IEL in vastly different scenarios: a call-

market with private goods in Arifovic and Ledyard (2007) and the Groves-Ledyard mechanism

with public goods in Arifovic and Ledyard (2008).

37There are two other Isaac-Walker experiments with only 1 observation each for which the
differences between IELORP and data were 9% and 20%. We believe a bigger sample size is
needed before we take these differences seriously.
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A secondary finding is that our model is robust. It relies on a very small number of parameters.

IEL has only 3 parameters: the size of the remembered set and the rate and range of the

experimentation. ORP has only 3 parameters: those that determine the probability distribution

on types. Further, the precise values of those parameters do not matter very much. We show

that the NMSE between IELORP and experimental data changes very little as we change the 6

parameters over a fairly wide range.

There are some open issues that remain to be dealt with in future research. One involves

the linear nature of the ORP model. It may be that the individual altruism parameter should

depend on N . As we have modeled it, each agent cares only about the average profit of all

agents and not the total. It is, however, likely that agents care about the total payoff but with

diminishing marginal utility as N increases.

A second issue involves the myopia of the IEL model. As it stands, the retained strategy

set does not consider sequences of moves, it only considers the next move. This means, in

particular, that teaching - moving now to encourage future behavior on the part of others - is

not a considered option by IEL agents. Spikes in contributions designed to encourage others to

contribute would be one example of such behavior. Another would be the ”restart” phenomenom

identified by Andreoni (1995).

A third issue involves the transferability of the IELORP* model across widely varying mech-

anisms and environments. IELORP assumes subjects come to the lab with their other-regarding

preferences built in. That is, it is assumed that nothing in the experiment triggers the altruistic

or fair-minded behavior. If this is true then the IELORP* model should work38 in environments

in which economists typically don’t consider other-regarding behavior. For example, IELORP*

should work in both the call market and Groves-Ledyard environments we had analyzed earlier

with IEL without ORP.39 If individuals really do have other-regarding preferences, then the fact

that we don’t seem to need those preferences to successfully model behavior in, say, continuous

markets should mean that there is no observable difference in the behavior of those with and

those without a preference for altruism.40 This needs to be researched more carefully.

Finally, there are some features of experimental designs that IEL is currently insensitive to.41

(i) There is no provision for communication although that can significantly increase contributions.

(ii) There is no provision for experience although it did appear that experience mattered in some

of the Isaac-Walker experiments. (iii) In IELORP* we also treated all subjects the same with

38By work we mean it should generate behavior similar to that in the experiments without
significant calibration or changes in the model parameters.

39See Arifovic and Ledyard (2007) for results indicating IEL explains behavior in some repeated
call markets. See Arifovic and Ledyard (2008) for results indicating how IEL explains behavior
in repeated Groves-Ledyard mechanism experiments.

40See Kucuksenel (2008) where he shows that, for example, in bi-lateral trading with asym-
metric information, the existence of altruism leads to increased trading and efficiency.

41See Zelmer (2003) for a list of those features that seem to be important from the experimental
evidence.
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respect to IEL. That is, we made no provision for subject pool differences in computational or

strategic skills that could affect the parameters J and µ. One reason this was not necessary was

the insensitivity of the performance of IELORP in VCMs to the values of those parameters. But

in more complex experiments this could be very important.

Even without this future research to provide refinements, IELORP* has proven to be a

parsimonious, robust model of behavior that requires little calibration to generate observations

similar to those of experimental subjects.
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Figure 1: Simple VCM IEL
Exp. Data Source: IW(1988)
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Figure 2: P=0.48, B=22, G=8, N=4.
Exp. Data Source: IW(1988)
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Figure 3: P=0.48, B=22, G=8, N=10.
Exp. Data Source: IW(1988)
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VCM: Average of 10 periods − N=4; M= 0.75; P=0.48; !i " [0,22.00], #i " [0,8.00] 
 avg contri =4.503621, std contri = 1.890699 

 red bars indicate > 95%( >=7.860075), black bars indicate < 5%( =<1.337466)

Figure 4: Frequency of 10 period average contribution
N = 4, M = 0.75
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VCM: Average of 10 periods − N=10; M= 0.30; P=0.48; !i " [0,22.00], #i " [0,8.00] 
 avg contri =2.810227, std contri = 0.962857 

 red bars indicate > 95%( >=4.570543), black bars indicate < 5%( =<1.444443)

Figure 5: Frequency of 10 period average contribution
N = 10, M = 0.3
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VCM: Average of last 3 periods − N=4; M= 0.30; P=0.48; !i " [0,22.00], #i " [0,8.00] 
 avg contri =0.259035, std contri = 0.509930 

 red bars indicate > 95%( >=0.766365), black bars indicate < 5%( =<0.018592)

Figure 6: Frequency of 3 period average contribution
N = 4, M = 0.3
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VCM: Average of last 3 periods − N=4; M= 0.75; P=0.48; !i " [0,22.00], #i " [0,8.00] 
 avg contri =4.321747, std contri = 2.547197 

 red bars indicate > 95%( >=9.189673), black bars indicate < 5%( =<0.106855)

Figure 7: Frequency of 3 period average contribution
N = 4, M = 0.75
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VCM: Average of last 3 periods − N=10; M= 0.30; P=0.48; !i " [0,22.00], #i " [0,8.00] 
 avg contri =1.976199, std contri = 1.298896 

 red bars indicate > 95%( >=4.357139), black bars indicate < 5%( =<0.239783)

Figure 8: Frequency of 3 period average contribution
N = 10, M = 0.3
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VCM: Average of last 3 periods − N=10; M= 0.75; P=0.48; !i " [0,22.00], #i " [0,8.00] 
 avg contri =4.400215, std contri = 1.620498 

 red bars indicate > 95%( >=7.026284), black bars indicate < 5%( =<1.789212)

Figure 9: Frequency of 3 period average contribution
N = 10, M = 0.75
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Figure 10: NMSE landscape for P=0.48
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Figure 11: Average contributions for different parameter sets
Using IELORP
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Figure 12: Average contributions, N=5 (total of 20 subjects) M=0.5
Exp. Data Source: Andreoni, 1995, regular data
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Figure 13: Average contributions, N=5 (total of 20 subjects) M=0.5
Exp. Data Source: Andreoni, 1995, rank data
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